Weston Favell CE Primary School

Calculation Guide

$$
\text { Year } 3
$$

NORTHAMPTON
PRIMARY ACADEMY TRUST

This calculation guide will demonstrate the written calculation strategies that are covered for addition, subtraction, multiplication and division.

Practising these will help in preparation for Year 4 and beyond!

If you have any questions or need any further support, please ask your class teacher and they will be happy to help you.

Addition

$8+9=17$
addend + addend $=$ sum

Example question: 142 + 39

A part/part whole model
$100 \quad 402$
Expanded Method

$$
\begin{array}{r}
30 \quad 9 \\
\hline
\end{array}
$$

$$
100+70+11
$$

Adjustment Method

We can add one to 39 to make 40 and then take this one back off again.

$$
\begin{aligned}
& 142+40=182 \\
& 182-1=181
\end{aligned}
$$

Subtraction

(Finding the Difference)

Example questions:

79-48 and 349-27 (no exchange)

357-64 (exchange required)

$349-27=$
$300 \quad 409$

- 207
$300+20+2$
$=322$

Vocabulary used at school to show this strategy is: 'exchange'. We cannot take 60 from 50 in this method. To solve this, we have altered how we partition the 300 and the 50 . Instead of 300 and 50, we exchange one ten so we have 200 and 150. We now have 150 so we are able to take our 60 away.

In class, this will be explored practically with equipment first and then completed in the abstract way so children can understand where the numbers come from.

Multiplication

$12 \times 7=84$

Example question: 37×8

The Grid Method

\mathbf{x}	30	7
8	(30×8)	(7×8)
	240	56

$240+56=296$

Partition the tens and ones and then multiply each by the factor.
These need adding back together to find your product.

Example question: $52 \div 4=13$

A bar model

Using Known Facts

$$
\begin{aligned}
& 4 \times 0=0 \\
& 4 \times 1=4 \\
& 4 \times 2=8 \\
& 4 \times 3=12 \\
& 4 \times 4=16 \\
& 4 \times 5=20 \\
& 4 \times 6=24 \\
& 4 \times 7=28 \\
& 4 \times 8=32 \\
& 4 \times 9=36 \\
& 4 \times 10=40 \\
& 4 \times 11=44 \\
& 4 \times 12=48
\end{aligned}
$$

We can partition our dividend with facts we know regarding the 4 times table.

$$
\begin{aligned}
& 40 \div 4=10 \\
& 12 \div 4=3 \\
& \text { So } 52 \div 4=13
\end{aligned}
$$

Times Tables

In Year Three, children continue to learn their time tables facts alongside their corresponding division facts e.g. $3 \times 2=6$ so $6 \div 2=3$.

The facts the children should focus on learning are the $3,6,4$ and 8 times tables. It helps children to apply this information fluently and with pace by the end of the year.

Children need to learn the times tables highlighted in the table below in order:

- $0 \times 2=0$
- $1 \times 2=2$
- $2 \times 2=4 \mathrm{etc}$.

Then they need to be able to answer in any order e.g. $4 \times 2=8,12 \times 2=24,2 \times 2=4$

x	1	2	3	4	5	6	7	8	9	10	11	12
1	1×1								Year	2 Facts		
2	2x1	2x2							Year	3 Facts		
3	3×1	3×2	3×3									
4	4×1	4×2	4×3	4×4								
5	5×1	5×2	5x3	5×4	5x5							
6	6×1	6×2	6x3	6×4	6x5	6×6						
7	7x1	7x2	7x3	7×4	7x5	7×6						
8	8×1	8×2	8×3	8×4	8×5	8×6	8×7	8×8				
9	9×1	9×2	9x3	9×4	9x5	9×6		9×8				
10	10x1	10×2	10x3	10x4	10x5	10x6	10x7	10x8	10x9	10×10		
11	11x1	11×2	11×3	11×4	11x5	11x6		11x8		11×10		
12	12x1	12x2	12x3	12x4	12x5	12×6		12x8		12×10		

Focus on the commutativity of the times table when practising at home. If I know $3 \times 5=15$, I also know $5 \times$ 3 is 15 ! This is represented in the table above.

