Weston Favell CE Primary School

Calculation Guide

$$
\text { Year } 4
$$

This calculation guide will demonstrate the written calculation strategies that are covered for addition, subtraction, multiplication and division.

Practising these will help in preparation for Year 5 and beyond!

If you have any questions or need any further support, please ask your class teacher and they will be happy to help you.

Addition

$8+9=17$
addend + addend $=$ sum

Example question: 189 +47

A bar model

A part/part whole
 model

Exploring using Base 10 Equipment

189
Column
Method
$+47$
236

11

Subtraction

(Finding the Difference)

Example questions:

147-39 (exchange required)

Bar models

A part/part whole model
$147-39=$

= 108
$147-39=$

Vocabulary used at school to show this is strategy is: 'exchange'. We cannot take 9 from 7 in this method. To solve this, we have altered how we partition the 40 and 7. Instead of 40 we exchange so we have 30 and 17 . We now have 17 so we are able to take our 9 away.

In class, this will be explored practically with equipment first and then completed in the abstract way so children can understand where the numbers come from.

Column Method with Exchange

3
1《17

- 39

108

Multiplication

$$
12 \times 7=84
$$

Example question: $42 \times 7=714$

The Grid Method

x	40	2
7	(40×7)	(2×7)
	280	14

$280+14=294$

Example question: $324 \div 6=54$

Short Division
054
$6 \longdiv { 3 ^ { 3 } 2 ^ { 2 } 4 }$

Times Tables

In Year Four children need to learn all of their time tables up to 12×12 facts alongside their corresponding division facts e.g. $3 \times 2=6$ so $6 \div 2=3$.

Children need to learn the times tables highlighted in the table below in order:

- $0 \times 2=0$
- $1 \times 2=2$
- $2 \times 2=4$ etc.

Then they need to be able to answer in any order e.g. $4 \times 2=8,12 \times 2=24,2 \times 2=4$

Focus on the commutativity of the times table when practising at home. If I know $3 \times 5=15, \mathrm{I}$ also know 5×3 is 15 ! This is represented in the table below:

\mathbf{x}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
$\mathbf{1}$	$\mathbf{1 \times 1}$											
2	2×1	2×2						Facts taught in Year 4				
$\mathbf{3}$	3×1	3×2	3×3									
4	4×1	4×2	4×3	4×4								
5	5×1	5×2	5×3	5×4	5×5							
7	6×1	6×2	6×3	6×4	6×5	6×6						
7	7×1	7×2	7×3	7×4	7×5	7×6	7×7					
8	8×1	8×2	8×3	8×4	8×5	8×6	8×7	8×8				
9	9×1	9×2	9×3	9×4	9×5	9×6	9×7	9×8	9×9			
10	10×1	10×2	10×3	10×4	10×5	10×6	10×7	10×8	10×9	10×10		
11	11×1	11×2	11×3	11×4	11×5	11×6	11×7	11×8	11×9	11×10	11×11	
12	12×1	12×2	12×3	12×4	12×5	12×6	12×7	12×8	12×9	12×10	12×11	12×12

